



Barratt Homes & David Wilson Homes

Halifax Road, Barnsley

**Noise Impact Assessment** 

LDP2246



## **ENVIRONMENT**

Barratt Homes and David Wilson Homes

Halifax Road

Barnsley

# **Noise Impact Assessment**

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

> Cambridge 14-16 High Street, Histon, Cambridge CB24 9JD T: 01223 235 173

Leeds Whitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

> London 11 Borough High Street London, SE1 9SE T: 0207 407 3879

Manchester 4th Floor Carvers Warehouse, 77 Dale Street Manchester, M1 2HG T: 0161 233 4260

Market Harborough 12a Woodcock House, Compass Point Market Harborough, Leicestershire, LE16 9HW T: 01858 455020

> Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

> > DECEMBER 2018



# **DOCUMENT ISSUE RECORD**

| Revision | Date of<br>Issue | Status | Author:                                | Checked:                                   | Approved:                                  |
|----------|------------------|--------|----------------------------------------|--------------------------------------------|--------------------------------------------|
| 1        | 23/11/2018       | Draft  | Lucy Elmer<br>BA (Hons), MSc,<br>AMIOA | Mike Barrett<br>BSc (Hons),<br>PGDip, MIOA |                                            |
| 2        | 03/12/2018       | Draft  | Lucy Elmer<br>BA (Hons), MSc,<br>AMIOA | Mike Barrett<br>BSc (Hons),<br>PGDip, MIOA | Mike Barrett<br>BSc (Hons),<br>PGDip, MIOA |

#### **Notice**

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB.



## **EXECUTIVE SUMMARY**

This noise assessment has been produced to support a detailed planning application for a proposed residential development at Land off Halifax Road, Barnsley.

The existing noise environment is dominated by road traffic on Halifax Road, Well House Lane and the surrounding road network.

A baseline noise survey was undertaken at the Site in November 2018. The results of the survey, and subsequent assessment work, have been assessed in accordance with current standards and guidance, following consultation with Barnsley Metropolitan Borough Council.

The assessment shows that, with appropriate consideration to noise mitigation measures, including the provision of appropriate glazing and ventilation to the façade facing directly onto Halifax Road and Well House Lane, an appropriate level of protection could be afforded to future noise sensitive receptors on the Site.

For the proposed dwelling located closest to Halifax Road, all criteria would be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum Rw + Ctr of 27 dB. Acoustic ventilators, which achieve a minimum performance of Dn,e,w + Ctr 35 dB would be required.

For the remaining dwellings located closest to Halifax Road, all criteria would be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum Rw + Ctr of 27 dB. Trickle ventilators, which achieve a minimum performance of Dn,e,w + Ctr 32 dB would be required.

For the proposed dwelling located closest to Well House Lane, all criteria would be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum Rw + Ctr of 27 dB. Acoustic ventilators, which achieve a minimum performance of Dn,e,w + Ctr 35 dB would be required.

For the remaining dwellings located closest to Well House Lane, all criteria would be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum Rw + Ctr of 27 dB. Trickle ventilators, which achieve a minimum performance of Dn,e,w + Ctr 32 dB would be required.

For rooms with no angle of view onto the roads, it is likely that internal noise levels will be achieved with open windows.

Based on the results of the assessment, it has been demonstrated that the Site is suitable for residential development. It is therefore considered that noise need not be a determining factor in the granting of detailed planning for the Proposed Development.



# **CONTENTS**

| EXE | ECUTIVE SUMMARY                                                                | ii |
|-----|--------------------------------------------------------------------------------|----|
| 1.  | INTRODUCTION                                                                   | 1  |
|     | Appointment & Background                                                       | 1  |
|     | Site Setting                                                                   | 1  |
| 2.  | STANDARDS AND GUIDANCE                                                         | 4  |
|     | National Planning Policy Framework (NPPF)                                      | 4  |
|     | BS 8233:2014: Guidance On Sound Insulation and Noise Reduction for Buildings   | 4  |
|     | World Health Organisation (WHO) 1999: Guidelines for Community Noise           | 5  |
|     | BS 4142: 2014 Methods for Rating and Assessing Industrial and Commercial Sound | 5  |
|     | Consultation with Barnsley Metropolitan Borough Council                        | 6  |
| 3.  | BASELINE NOISE MONITORING                                                      | 7  |
|     | Equipment                                                                      | 8  |
|     | Meteorological Conditions                                                      | 9  |
|     | Survey Results                                                                 | 9  |
| 4.  | ASSESSMENT                                                                     | 11 |
|     | Noise Model                                                                    | 11 |
|     | Noise from Road Traffic – Halifax Road                                         | 11 |
|     | Noise from Road Traffic – Well House Lane                                      | 12 |
|     | Noise in the north eastern part of the Site                                    | 14 |
|     | Noise from the existing commercial premises                                    | 14 |
| 5.  | MITIGATION                                                                     | 16 |
|     | Road Traffic Noise                                                             | 16 |
| 6.  | CONCLUSION AND RECOMMENDATIONS                                                 | 20 |
|     | Noise                                                                          | 23 |
|     | Acoustic Terminology                                                           | 24 |

# **FIGURES**

Figure 1.1: Site Context Plan

Figure 3.1 Noise Monitoring Position

# **APPENDICES**

Appendix A: Glossary Of Terms Appendix B: Baseline Survey Data

Appendix C: Gardens requiring acoustic fencing



## 1. INTRODUCTION

## **Appointment & Background**

- 1.1 BWB Consulting Ltd was appointed by the client to undertake an environmental noise assessment for a proposed residential development at Land off Halifax Road, Barnsley.
- 1.2 This assessment has been undertaken based on the results of a baseline noise survey on the Site. The results of the survey have been assessed in accordance with current standards and guidance, following consultation with Barnsley Metropolitan Borough Council.
- 1.3 Where appropriate, consideration has been given to noise mitigation measures to demonstrate how an appropriate level of protection could be afforded to future noise sensitive receptors on the Site.
- 1.4 This report is necessarily technical in nature, so to assist the reader, a glossary of acoustic terminology can be found in **Appendix A**.

## Site Setting

- 1.5 The proposed development site currently comprises open land. To the north, the site is bordered by Halifax Road, with open land beyond. To the north east, the site is bordered by a railway line with open land and existing dwelling beyond. To the east, the site is bordered by existing dwellings off Well House Lane with Well House Lane beyond. To the south, the site is bordered by existing dwellings off Well House Lane with Barnsley Road beyond. To the west, the site is bordered by open land. To the north west, the site is bordered by an existing commercial premises off Halifax Road, with open land beyond.
- 1.6 **Figure 1.1** shows the Site location.



Figure 1.1: Site Context Plan



# **Proposed Development**

1.7 The proposed development will comprise the construction of approximately 459 residential dwellings and associated infrastructure. An indicative layout is shown below in **Figure 1.2.** 



Figure 1.2: Indicative Site Layout





## 2. STANDARDS AND GUIDANCE

#### National Planning Policy Framework (NPPF)

- 2.1 Published in July 2018, this document sets out the Government's planning policies for England and supersedes the previous NPPF published in 2012. It makes the following reference to noise in the section entitled Conserving and enhancing the natural environment:
  - "170. Planning policies and decisions should contribute to and enhance the natural and local environment by:

[...]

- e) preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality, taking into account relevant information such as river basin management plans."
- 2.2 It also makes the following references to noise in the Section entitled Ground conditions and pollution:
  - "180. Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development. In doing so they should:
  - a) mitigate and reduce to a minimum potential adverse impacts resulting from noise from new development and avoid noise giving rise to significant adverse impacts on health and the quality of life<sup>60</sup>;
    - b) identify and protect tranquil areas which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason.
  - <sup>60</sup> See Explanatory Note to the Noise Policy Statement for England (Department for Environment, Food & Rural Affairs, 2010)."

## BS 8233:2014: Guidance On Sound Insulation and Noise Reduction for Buildings

2.3 This standard provides guidance for the control of noise in and around buildings. The guidance provided within the document is applicable to the design of new buildings, or refurbished buildings undergoing a change of use, but does not provide guidance on assessing the effects of changes in the external noise levels to occupants of an existing building.



2.4 The guidance provided includes appropriate internal and external noise level criteria which are applicable to dwellings for steady external noise sources. It is stated that it is desirable that the internal ambient noise level does not exceed the following criteria set out in **Table 2.1** below:

Table 2.1: Summary of Internal Ambient Noise Levels to be achieved in Habitable Rooms when Assessed in Accordance with BS 8233

| Activity                      | Location         | Period                                   |                                             |  |  |
|-------------------------------|------------------|------------------------------------------|---------------------------------------------|--|--|
| ,                             |                  | 07:00 to 23:00<br>Hours,<br>i.e. Daytime | 23:00 to 07:00<br>Hours,<br>i.e. Night-time |  |  |
| Resting                       | Living Room      | 35 dB Laeq, 16 Hour                      | -                                           |  |  |
| Dining                        | Dining Room/area | 40 dB Laeq, 16 Hour                      | -                                           |  |  |
| Sleeping<br>(daytime resting) | Bedroom          | 35 dB L <sub>Aeq, 16 Hour</sub>          | 30 dB L <sub>Aeq, 8 Hour</sub>              |  |  |

- 2.5 Whilst BS 8233:2014 recognises that a guideline value may be set in terms of SEL or LAFmax for the assessment of regular individual noise events that can cause sleep disturbance during the night-time, a specific criterion is not stipulated. Accordingly, reference has been made in this assessment to the World Health Organisation (WHO) 1999: Guidelines for Community Noise below.
- 2.6 With respect to external amenity space such as gardens and patios it is stated that it is desirable that the noise level does not exceed 50 dB LAeq,T, with an upper guideline value of 55 dB LAeq,T which would be acceptable in noisier environments. It is then confirmed that higher external noise criteria may be appropriate under certain circumstances such as within city centres urban areas, and locations adjoining the strategic transportation network, where it may be necessary to compromise between elevated noise levels and other factors such as convenience of living, and efficient use of land resource.

#### World Health Organisation (WHO) 1999: Guidelines for Community Noise

2.7 As with the 'good' and 'reasonable' criteria in BS8233, the LAFmax criterion in BS8233 is largely concordant with the World Health Organisation (WHO) guidance: 1999: Guidelines for community noise. This document draws upon guidance from Vallet and Vernay, which states:

"For good sleep, it is believed that indoor sound pressure levels should not exceed approximately 45 dB LAFmax more than 10-15 times per night"

# BS 4142: 2014 Methods for Rating and Assessing Industrial and Commercial Sound

- 2.8 The BS 4142 Standard describes methods for rating and assessing the following:
  - Sound from industrial and manufacturing processes;
  - Sound from fixed installations which comprise mechanical and electrical plant and equipment;



- Sound from the loading and unloading of goods and materials at industrial and/or commercial premises; and
- Sound from mobile plant and vehicles that is an intrinsic part of the overall sound emanating from premises or processes, such as that from forklift trucks, or that from train movements on or around an industrial and/or commercial site.
- 2.9 The methods use outdoor sound levels to assess the likely effects of sound on people who might be inside or outside a dwelling or premises used for residential purposes upon which sound is incident. The Standard advises the purpose of the methodology includes the assessment of sound from any plant and activities associated with existing industrial and/or commercial uses at proposed residential dwellings.
- 2.10 If appropriate, the specific sound level of the source (LAeq,T) is corrected, by the application of one or more corrections for acoustic features such as tonal qualities and/or distinct impulses, to give a 'rating' level (LAr,Tr). The Standard effectively compares and rates the difference between the rating level of the specific sound and the typical background sound level (LA90,T) in the absence of the specific sound.
- 2.11 The Standard advises that the time interval ('T') of the background sound measurement should be sufficient to obtain a representative or typical value of the background sound level at the time(s) the source in question operates or is proposed to operate in the future.
- 2.12 Comparing the rating level with the background sound level, BS 4142 states:

"Typically, the greater this difference, the greater the magnitude of impact.

A difference of around +10 dB or more is likely to be an indication of a significant adverse impact, depending on the context.

A difference of around +5 dB is likely to be an indication of an adverse impact, depending on the context.

The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or a significant adverse impact. Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact, depending on the context."

#### Consultation with Barnsley Metropolitan Borough Council

- 2.13 Consultation was undertaken with Mr. James Gardham, Environmental Health Officer at Barnsley Metropolitan Borough Council on 18th October 2018. Mr. Gardham replied via email on 22nd October, stating that the proposed scope of works was acceptable.
- 2.14 Mr. Gardham stated that there were no existing concerns regarding vibration from the railway line.



## 3. BASELINE NOISE MONITORING

- 3.1 A baseline noise survey has been undertaken to determine the prevailing noise climate across the proposed development site. Measurement locations (MLs) adopted during the survey were selected to determine noise levels from road traffic on Halifax Road to the north, Well House Lane to the east, and train movements on the rail corridor to the north east. MLs adopted during the survey are identified in **Figure 3.1** below.
- 3.2 Details of monitoring undertaken at each location are provided below.



ML1

- 3.3 Monitoring at ML1 was undertaken over a 24-hour period commencing at 00:00hrs on Thursday 22<sup>th</sup> November 2018. Measurement equipment was established in free-field conditions at a height of 1.5m above local ground level adjacent to the north eastern site boundary. The railway line adjacent to the site boundary is in a circa. 25m deep cutting. Measurement equipment was positioned circa. 1.5m from the edge of the cutting edge.
- 3.4 The noise environment at ML1 was generally dominated by road traffic on Halifax Road to the north and Barnsley Road to the South. Noise from train pass-bys was noted to be audible on occasion.



ML2

- 3.5 Monitoring at ML2 was undertaken over a 24-hour period commencing at 00:00hrs on Thursday 22<sup>th</sup> November 2018. Measurement equipment was established in free-field conditions at a height of 1.8m above local ground level and circa. 3m from the nearside carriageway of Well House Lane.
- 3.6 The noise environment at ML2 was noted to be dominated by local road traffic as well as distant road traffic on Halifax Road and Barnsley Road throughout.

ML3

- 3.7 Monitoring at ML3 was undertaken over a 24-hour period commencing at 23:00hrs on Wednesday 21st November 2018. Measurement equipment was established in free-field conditions at a height of 1.8m above local ground level and 11m from the nearside carriageway of Halifax Road.
- 3.8 The noise environment at ML3 was noted to be dominated by road traffic on Halifax Road throughout.

## **Equipment**

3.9 The baseline noise survey was undertaken using the Class 1 specification noise measurement equipment detailed in **Table 3.1**. Equipment was calibrated using a portable calibrator immediately before and after the measurements with no significant drift in calibration observed. The sound level meters, pre-amplifiers and microphones were calibrated to traceable standards within the 24 months prior to the measurements. The portable calibrators were calibrated within the 12 months preceding the date of the survey.

**Table 3.1**: Equipment Summary

| Position | Item              | Make & Model      | Serial Number | Calibration due Date |
|----------|-------------------|-------------------|---------------|----------------------|
|          | Sound Level Meter | Svantek 971       | 72615         |                      |
| 1        | Pre-amplifier     | Svantek SV18      | 72283         | June 2020            |
|          | Microphone        | ACO Pacific 7052E | 69463         |                      |
|          | Sound Level Meter | Svantek 971       | 80342         |                      |
| 2        | Pre-Amplifier     | Svantek SV18      | 71576         | March 2019           |
|          | Microphone        | ACO Pacific 7052E | 59531         |                      |
|          | Sound Level Meter | 01 dB Fusion      | 11327         |                      |
| 3        | Pre-Amplifier     | 01 dB PRE 22      | 1605201       | April 2019           |
|          | Microphone        | Grass 40CE        | 259479        |                      |
| 1        | Calibrator        | SV33A             | 76650         | July 2019            |
| 2, 3     | Calibrator        | 01dB-Stell CAL21  | 34675335      | August 2020          |



## **Meteorological Conditions**

3.10 Weather conditions during periods of attendance were noted to be conducive to environmental noise measurement, it being dry with clear skies and negligible wind from the south west. Based on a review of publicly available metrological data at a nearby weather station, it is understood weather conditions remained suitable for environmental noise measurements throughout the survey.

## **Survey Results**

3.11 The survey results, and representative noise levels are summarised in **Tables 3.2 to 3.6** below. Full results are provided in **Appendix B**.

Table 3.2 – Summary of measured sound pressure levels at ML1

| Start Time         | Period                     | dB L <sub>Aeq,T</sub> | dB L <sub>A90,T</sub> 1 | dB L <sub>AFmax</sub> |
|--------------------|----------------------------|-----------------------|-------------------------|-----------------------|
| 07:00 22/11/2018   | Daytime (07:00 – 23:00)    | 47                    | 41                      | -                     |
| 00:00 22/10/2018   | Night-time (23:00 – 07:00) | 42                    | 29                      | 53                    |
| 20.00 22, 10, 2010 | 1                          |                       |                         |                       |

<sup>&</sup>lt;sup>1</sup> Mean L<sub>A90,1hr</sub> and L<sub>A90,15mins</sub> values during daytime and night time periods, respectively

Table 3.3 - Summary of measured octave band sound pressure levels at ML1

| Pariod     | Octave Band Sound Pressure Levels (L <sub>eq</sub> dB) Period |        |        |        |      |      | dB(A) |      |       |
|------------|---------------------------------------------------------------|--------|--------|--------|------|------|-------|------|-------|
| reliod     | 63 Hz                                                         | 125 Hz | 250 Hz | 500 Hz | 1kHz | 2kHz | 4kHz  | 8kHz | GB(A) |
| Daytime    | 56                                                            | 48     | 41     | 40     | 43   | 41   | 35    | 31   | 47    |
| Night-time | 51                                                            | 43     | 37     | 36     | 38   | 35   | 33    | 33   | 42    |

Table 3.4 – Summary of measured sound pressure levels at ML2

| Start Time       | Period                     | dB L <sub>Aeq,T</sub> | dB L <sub>A90,T</sub> 1 | dB L <sub>AFmax</sub> |
|------------------|----------------------------|-----------------------|-------------------------|-----------------------|
| 07:00 22/11/2018 | Daytime (07:00 – 23:00)    | 63                    | 41                      | -                     |
| 00:00 22/10/2018 | Night-time (23:00 – 07:00) | 53                    | 29                      | 772                   |

<sup>&</sup>lt;sup>1</sup> Mean L<sub>A90,1hr</sub> and L<sub>A90,15mins</sub> values during daytime and night time periods, respectively

Table 3.5 - Summary of measured octave band sound pressure levels at ML2

| David      | Octave Band Sound Pressure Levels (L <sub>eq</sub> dB) |        |        |        |      |      |      | dD(A) |       |
|------------|--------------------------------------------------------|--------|--------|--------|------|------|------|-------|-------|
| Period     | 63 Hz                                                  | 125 Hz | 250 Hz | 500 Hz | 1kHz | 2kHz | 4kHz | 8kHz  | dB(A) |
| Daytime    | 63                                                     | 57     | 54     | 54     | 58   | 57   | 55   | 52    | 63    |
| Night-time | 57                                                     | 51     | 51     | 47     | 49   | 46   | 42   | 38    | 53    |

<sup>&</sup>lt;sup>2</sup> 10th highest discreet event at night (discreet events separated by at least 5-minutes)

<sup>&</sup>lt;sup>2</sup> 10th highest discreet event at night (discreet events separated by at least 5-minutes)



Table 3.6 – Summary of measured sound pressure levels at ML3

| Start Time                                                                                 | Period                     | dB L <sub>Aeq,T</sub> | dB L <sub>A90,T</sub> 1 | dB L <sub>AFmax</sub> |  |  |
|--------------------------------------------------------------------------------------------|----------------------------|-----------------------|-------------------------|-----------------------|--|--|
| 07:00 22/11/2018                                                                           | Daytime (07:00 – 23:00)    | 60                    | 45                      | -                     |  |  |
| 23:00 21/10/2018                                                                           | Night-time (23:00 – 07:00) | 55                    | 32                      | 732                   |  |  |
| 1 Mean Laga lar and Laga 15mins values during daytime and night time periods, respectively |                            |                       |                         |                       |  |  |

Table 3.7 - Summary of measured octave band sound pressure levels at ML3

| Pariad     | Octave Band Sound Pressure Levels (L <sub>eq</sub> dB) |        |        |        |      |      |      |      | dD(A) |
|------------|--------------------------------------------------------|--------|--------|--------|------|------|------|------|-------|
| Period     | 63 Hz                                                  | 125 Hz | 250 Hz | 500 Hz | 1kHz | 2kHz | 4kHz | 8kHz | dB(A) |
| Daytime    | 64                                                     | 60     | 53     | 53     | 58   | 52   | 46   | 38   | 60    |
| Night-time | 60                                                     | 55     | 52     | 51     | 50   | 47   | 40   | 36   | 55    |

<sup>&</sup>lt;sup>2</sup> 10th highest discreet event at night (discreet events separated by at least 5-minutes)



#### 4. ASSESSMENT

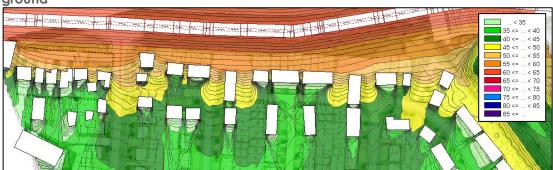
4.1 The results of the baseline noise survey have been used as a basis for the noise assessment of the Site's suitability for residential development. The assessment considers noise from road traffic and rail noise on proposed receptors.

#### **Noise Model**

- 4.2 A detailed noise model has been generated in order to calculate the daytime and night-time noise propagation across the site from the surrounding roads. The following predictions methodologies were adopted for the modelling exercise;
  - The noise model was set up to apply the noise prediction methodology set out in the 1988 Department of Transport and the Welsh Office document Calculation of Road Traffic Noise for road traffic noise sources;
  - The noise data collected from the Site was used to calibrate the road traffic noise sources;
  - Mapping of the Site and the surrounding area was calibrated into the noise model based on known Ordinance Survey grid reference points;
  - Indicative ground topography was approximated using OS Terrain 5 DTM information;
  - Off-site buildings which would provide screening to the Site have been incorporated as reflective façades;
  - To reflect the local ground cover, ground absorption was set to G = 0.5 (50% acoustically absorptive ground); and
  - The model was set to include second order reflected noise from solid structures.
- 4.3 ML2 and ML3 have been included into the model and the resultant road traffic noise has been adjusted until the model is equal to the noise levels at ML2 and Ml3 for the daytime and night-time periods. The night-time maximum levels have been included in the model as a point source and calibrated to the monitoring locations.
- 4.4 The proposed site layout, shown in **Figure 1.2**, has been incorporated into the model, and the free-field level at the nearest façades has been calculated. Noise contours have been calculated showing the external free-field noise level in external areas, across the proposed development site. The predicted noise levels have been used to inform the assessment.

#### Noise from Road Traffic - Halifax Road

4.5 Noise levels measured at ML3 have been used as the basis for the assessment of road traffic noise from Halifax Road.


#### External Daytime Noise Levels

- 4.6 The indicative masterplan, shown in **Figure 1.2**, indicates that outdoor living areas will face Halifax Road.
- 4.7 The daytime noise contour, shown in **Figure 4.1**, indicates that for outdoor living areas located closest to Halifax Road, the noise levels will be above the upper guideline value of 55dB, L<sub>Aeq,16h</sub>, in line with BS8233 and WHO guidance. Therefore, mitigation will be required.



4.8 The daytime noise contour plot indicates that for the majority of the site, noise levels in outdoor living areas will be below the 'desirable' guideline value of 50dB LAeq,T. Therefore, it is considered that mitigation measures are not required for these garden areas.

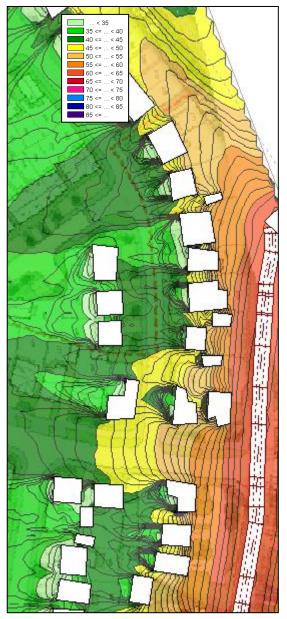
Figure 4.1 Noise levels in garden areas facing Halifax Road, dB LAeq,16h, 1.5m above ground



## Internal Noise Levels

- 4.9 The results of the noise modelling indicate that the nearest proposed façade to Halifax Road would be exposed to free-field levels of 60dB L<sub>Aeq,16hr</sub> and 55dB L<sub>Aeq,8hr</sub>. The 10<sup>th</sup> highest calculated night-time L<sub>AFmax</sub> level of 71dB has been used.
- 4.10 Assuming a 15dB loss through a partially opened window, this would result in internal levels of 45dB LAeq,16h and 40dB LAeq,8h for daytime and night-time, respectively. A partially opened window would also result in an internal level of 56dB LAFmax during the night-time. This will exceed the criteria of 35dB for the daytime and 30dB and 45dB for the night-time, assuming partially opened windows, therefore mitigation is required.

## Noise from Road Traffic – Well House Lane


4.11 Noise levels measured at ML2 have been used as the basis for the assessment of road traffic noise from Well House Lane.

#### External Daytime Noise Levels

- 4.12 The indicative masterplan, shown in **Figure 1.2**, indicates that some outdoor living areas will face Well House Lane.
- 4.13 The daytime noise contour, shown in **Figure 4.2**, indicates that for outdoor living areas located closest to Well House Lane, the noise levels will be above the upper guideline value of 55dB, L<sub>Aeq,16h</sub>, in line with BS8233 and WHO guidance. Therefore, mitigation will be required.
- 4.14 The daytime noise contour plot indicates that for the majority of the site, noise levels in outdoor living areas will be below the 'desirable' guideline value of 50dB LAeq,T. Therefore, it is considered that mitigation measures are not required for these gardens.



Figure 4.2 Noise levels in garden areas facing Well House Lane, dB  $L_{\text{Aeq,16h}}$ , 1.5m above ground



#### Internal Noise Levels

- 4.15 The results of the noise modelling indicate that the nearest proposed façade to Well House Lane would be exposed to free-field levels of 62dB  $L_{Aeq,16hr}$  52dB  $L_{Aeq,8hr}$ . The  $10^{th}$  highest calculated night-time  $L_{AFmax}$  level of 72dB has been used.
- 4.16 Assuming a 15dB loss through a partially opened window, this would result in internal levels of 47dB LAeq,16h and 37dB LAeq,8h for daytime and night-time, respectively. A partially opened window would also result in an internal level of 57dB LAFmax during the night-time. This will exceed the criteria of 35dB for the daytime and 30dB and 45dB for the night-time, assuming partially opened windows, therefore mitigation is required. Consideration has been given to mitigation in Section 5.



## Noise in the north eastern part of the Site

- 4.17 Onsite observations indicate that the noise environment was generally dominated by road traffic on Halifax Road and Barnsley Road. Noise from train pass-bys was noted to be occasionally audible.
- 4.18 Noise levels measured at ML1 have been used as the basis for the assessment of noise in the north eastern part of the site.

## Daytime External Amenity Areas

4.19 The measured daytime noise level at ML1 is 47dB L<sub>Aeq,16h</sub>. This is below the guideline value of 55dB L<sub>Aeq,16h</sub> as recommended in BS8233 and WHO guidance.

#### Internal Noise Levels

- 4.20 Onsite observations indicate that the noise levels in the north eastern part of the site are dominated by road traffic on the surrounding road network. The free-field measured noise levels during the daytime and night-time periods are 47dB L<sub>Aeq,16hr</sub> and 42dB L<sub>Aeq,16hr</sub> respectively. Assuming a 15dB loss through a partially opened window, this would result in internal levels of 32dB L<sub>Aeq,16h</sub> and 27dB L<sub>Aeq,8h</sub> for daytime and night-time, respectively. This will be below the criteria of 35dB for the daytime and 30dB for the night-time.
- 4.21 It is considered that the LAFmax will be dominated by train pass-bys during the night-time period. The 10<sup>th</sup> highest night-time LAFmax level is 53dB measured at ML1. A partially opened window would also result in an internal level of 38dB LAFmax during the night-time. This will be below the criteria of 45dB for the night-time, assuming partially opened windows. Therefore, mitigation is not considered warranted at this time.
- 4.22 Furthermore, the railway line is located within a deep cutting. Therefore, it is likely that further screening will be afforded and the night-time LAFmax level will be lower than that stated above.

#### Noise from the existing commercial premises

- 4.23 There is an existing commercial/industrial unit located adjacent to the north western boundary of the proposed development site. Onsite observations, undertaken during the site walkover, indicate that noise from the unit is not audible on the proposed development site. Furthermore, the unit is not operational during the night-time period.
- 4.24 There is a loading area on the north western façade of the unit, and it is considered that noise from deliveries may be audible at the proposed development site. Given the size of the access route of the commercial premises, it is considered likely that deliveries will take place using Light Goods Vehicles (LGV).
- 4.25 To assess the potential noise impact from the unloading and loading of LGVs, an assessment has been undertaken based on noise data from a library of historical measurement data which has been collected during surveys undertaken at similar developments.



4.26 A summary of the source noise data used within the assessment of noise from unloading/loading operations is presented in **Table 4.1** below.

Table 4.1 – Adopted noise emission data for noise sources associated with unloading/loading operations

| Noise Source      | Distance | SEL  |
|-------------------|----------|------|
| Unloading Process | 3m       | 71.7 |

- 4.27 The assessment has been based on the following assumptions;
  - Unloading/loading operations will occur for a 20-minute period, every hour;
  - No HGVs access the site;
  - No activities are undertaken during the night-time period;
  - Sources are treated as point sources; and,
  - The nearest proposed receptors to the north are located adjacent to the loading area.
- 4.28 Based on the above information, the specific noise level associated with unloading/loading activities over a 20-minute daytime period have been calculated, without any mitigation in place.
- 4.29 This results in a specific noise level of 41dB L<sub>Aeq,20min</sub>. This is below the lower guideline value of 50dB L<sub>Aeq,16hr</sub> as recommended in BS8233 and WHO guidelines. In addition, internal noise levels are likely to be achieved with windows partially open, when considering noise from loading/unloading activities.
- 4.30 Review of available information indicates that the premises are only open on weekdays between 0830 hours and 1530 hours. Therefore, it is considered likely that any loading and unloading activities will only occur during these hours, and will avoid the most sensitive times, i.e. early morning and late evening periods. Therefore, it is considered that noise from loading/unloading activities is unlikely to cause a significant impact at proposed receptors.



#### 5. MITIGATION

5.1 In Section 4, it has been determined that consideration should be given to mitigation measures for external and internal habitable areas of the Proposed Development to provide a commensurate level of protection against road traffic noise for future occupants.

#### **Road Traffic Noise**

#### External Living Areas

- 5.2 Noise levels in outdoor living areas located closest to, and with a direct line of sight to Halifax Road are predicted to exceed the recommended guideline noise level. Therefore, mitigation is required to reduce noise levels from road traffic to within acceptable levels as recommended in BS8233 and WHO.
- 5.3 The Site has been remodelled with a 1.8m high close boarded fencing around the proposed garden areas located closest to Halifax Road and Well House Lane. With this in place, the results show that noise levels in outdoor living areas are below the upper guideline value of 55dB LAeq,16h. The garden areas requiring 1.8m high acoustic fences are shown in **Appendix C**.
- 5.4 It is considered that for proposed garden areas further into the site, or for garden areas located on the screened side of dwellings, the mitigation requirements will be less than those stated above, as garden areas will be located at a greater distance from the roads and will be screened by the development itself. The results of the modelling show that the noise levels in these gardens should be achieved without any mitigation in place.
- 5.5 The acoustic barriers should have a minimum mass per unit area of 15kg/m² and should be solid, with no gaps.

#### Halifax Road - Internal Living Areas

- 5.6 It is widely considered that first amelioration measure available to an occupant will be to close windows. Therefore, in order to assess the noise mitigation required to ensure an adequate level of protection against noise, it is appropriate to explore in the first instance the protection that could be afforded by the sound insulation performance of the external building fabric, and in particular the glazing elements.
- 5.7 Detailed noise break-in calculations have been undertaken in accordance with the rigorous method from section G.2 from BS 8233 based on the frequency spectra measured on-site and the following dimension:
  - Room dimensions of 3m (width) x 4.4m (depth) x 3m (height);
  - Double glazed window dimensions of 1.0m (width) x 2.5m (height);
  - A reverberation time of 0.5 seconds; and,



- 1No. ventilator per habitable room.
- 5.8 To achieve the daytime internal noise criterion of 35 dB LAeq,16h adopted for this assessment, based on the façade closest to Halifax Road experiencing 60dB LAeq,16h free-field at the facade, a reduction of 25dB(A) would be required for habitable rooms. To achieve the internal criteria of 30 dB LAeq,8h and 45 dB LAFmax during the night-time, adopted for this assessment, a reduction of up to 28 dB(A) would be required for habitable rooms.
- 5.9 For the proposed dwelling located closest to Halifax Road, all criteria should be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum  $R_W + C_{tr}$  of 27 dB. Acoustic ventilators, which achieve a minimum performance of  $D_{n,e,W} + C_{tr}$  35 dB, such as the Renson Sonovent 10mm-20mm air slot, would be required.
- 5.10 For the remaining dwellings located closest to Halifax Road, all criteria should be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum  $R_w + C_{tr}$  of 27 dB. Trickle ventilators, which achieve a minimum performance of  $D_{n,e,w} + C_{tr}$  32 dB would be required.
- 5.11 The above presents solutions to satisfy the proposed internal ambient noise limits within habitable rooms during normal ventilation conditions to meet Part F minimum ventilation.
- 5.12 For dwellings which do not have a direct line of sight to the road, all criteria should be achieved with standard double glazing and open windows.
- 5.13 **Figure 4.1** shows the proposed dwellings which would require uprated ventilation to reduce noise from road traffic.



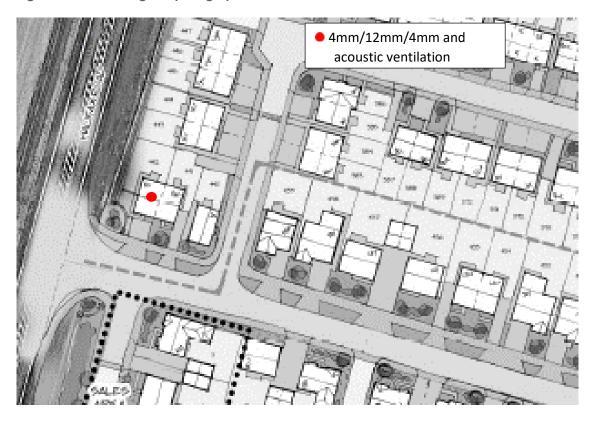



Figure 4.1 – Dwellings requiring uprated ventilation

### Well House Lane - Internal Living Areas

- 5.14 To achieve the daytime internal noise criterion of 35 dB L<sub>Aeq,16h</sub> adopted for this assessment, based on the façade closest to Well House Lane experiencing 62dB L<sub>Aeq,16h</sub> free-field at the facade, a reduction of 27dB(A) would be required for habitable rooms. To achieve the internal criteria of 30 dB L<sub>Aeq,8h</sub> and 45 dB L<sub>AFmax</sub> during the night-time, adopted for this assessment, a reduction of up to 27 dB(A) would be required for habitable rooms.
- 5.15 Based on these noise levels and typical room properties, discussed in paragraph 5.7, noise break-in calculations have been undertaken in accordance with the rigorous method from section G.2 of BS 8233:2014.
- 5.16 For the proposed dwelling located closest to Well House Lane, all criteria should be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum  $R_W + C_{tr}$  of 27 dB. Acoustic ventilators, which achieve a minimum performance of  $D_{n,e,w} + C_{tr}$  35 dB, such as the Renson Sonovent 10mm-20mm air slot, would be required.
- 5.17 For the remaining dwellings located closest to Well House Lane, all criteria should be achieved with standard thermal double glazing such as a configuration of 4mm pane / 12mm airgap / 4mm pane, which would need to provide a minimum  $R_W + C_{tr}$  of 27 dB. Trickle ventilators, which achieve a minimum performance of  $D_{n,e,W} + C_{tr}$  32 dB would be required.



- 5.18 The above presents solutions to satisfy the proposed internal ambient noise limits within habitable rooms during normal ventilation conditions to meet Part F minimum ventilation.
- 5.19 For dwellings which do not have a direct line of sight to the road, all criteria should be achieved with standard double glazing and open windows.
- 5.20 **Figure 4.2** shows the proposed dwellings which would require uprated ventilation to reduce noise from road traffic.







## 6. CONCLUSION AND RECOMMENDATIONS

- 6.1 BWB Consulting Ltd has been appointed by the client to undertake an environmental noise assessment for a proposed residential development at Land off Halifax Road, Barnsley.
- 6.2 This assessment has been undertaken based on the results of a baseline noise survey on the Site. The results of the survey have been assessed in accordance with current standards and guidance.
- 6.3 The noise assessment shows that with appropriate consideration to noise mitigation measures, a commensurate level of protection can be afforded to future noise sensitive receptors on the site.
- 6.4 Based on the results of the assessment, it has been demonstrated that the Site is suitable for residential development. It is therefore considered that noise need not be a determining factor in the granting of detailed planning permission for the proposed development.



**APPENDICES** 



**APPENDIX A: Glossary of Terms** 



#### Noise

Noise is defined as unwanted sound. Human ears are able to respond to sound in the frequency range 20 Hz (deep bass) to 20,000 Hz (high treble) and over the audible range of 0 dB (the threshold of perception) to 140 dB (the threshold of pain). The ear does not respond equally to different frequencies of the same magnitude but is more responsive to mid-frequencies than to lower or higher frequencies. To quantify noise in a manner that approximates the response of the human ear, a weighting mechanism is used. This reduces the importance of lower and higher frequencies, in a similar manner to the human ear.

Furthermore, the perception of noise may be determined by a number of other factors, which may not necessarily be acoustic. In general, the impact of noise depends upon its level, the margin by which it exceeds the background level, its character and its variation over a given period of time. In some cases, the time of day and other acoustic features such as tonality or impulsiveness may be important, as may the disposition of the affected individual. Any assessment of noise should give due consideration to all of these factors when assessing the significance of a noise source.

The most widely used weighting mechanism that best corresponds to the response of the human ear is the 'A'-weighting scale. This is widely used for environmental noise measurement, and the levels are denoted as dB(A) or L<sub>Aeq</sub>, L<sub>A90</sub> etc., according to the parameter being measured.

The decibel scale is logarithmic rather than linear, and hence a 3 dB increase in sound level represents a doubling of the sound energy present. Judgement of sound is subjective, but as a general guide a 10 dB(A) increase can be taken to represent a doubling of loudness, whilst an increase in the order of 3 dB(A) is generally regarded as the minimum difference needed to perceive a change under normal listening conditions.



# **Acoustic Terminology**

| dB (decibel)                        | The scale on which sound pressure level is expressed. Sound pressure level is defined as 20 times the logarithm of the ratio between the root-mean-square pressure of the sound field and a reference pressure (2x10-5Pa).                                                                                                                                                                           |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dB(A)                               | A-weighted decibel. This is a measure of the overall level of sound across the audible spectrum with a frequency weighting (i.e. 'A' - weighting) to compensate for the varying sensitivity of the human ear to sound at different frequencies.                                                                                                                                                      |
| L <sub>Aeq,T</sub>                  | L <sub>Aeq</sub> is defined as the notional steady sound level which, over a stated period of time (T), would contain the same amount of acoustical energy as the A - weighted fluctuating sound measured over that period.                                                                                                                                                                          |
| LAmax                               | $L_{Amax}$ is the maximum A - weighted sound pressure level recorded over the period stated. $L_{Amax}$ is sometimes used in assessing environmental noise where occasional loud noises occur, which may have little effect on the overall $L_{eq}$ noise level but will still affect the noise environment. Unless described otherwise, it is measured using the 'fast' sound level meter response. |
| L <sub>10</sub> and L <sub>90</sub> | If a non-steady noise is to be described it is necessary to know both its level and the degree of fluctuation. The $L_n$ indices are used for this purpose, and the term refers to the level exceeded for n% of the time. Hence $L_{10}$ is the level exceeded for 10% of the time, and the $L_{90}$ is the level exceeded for 90% of the time.                                                      |
| Free-field Level                    | A sound field determined at a point away from reflective surfaces other than the ground with no significant contributions due to sound from other reflective surfaces. Generally as measured outside and away from buildings.                                                                                                                                                                        |
| Façade Level                        | A sound field determined at a distance of 1m in front of a large sound reflecting object such as a building façade.                                                                                                                                                                                                                                                                                  |



APPENDIX B: Baseline Survey Data



Table B1: Results from ML1

| Table B1: Results fro |            | -10.1                 | -ID I                 | -10.1     | Sound Pressure Levels (dB L <sub>eq,T</sub> ) per octave band (Hz) |        |        |        |       |      |      |       |  |
|-----------------------|------------|-----------------------|-----------------------|-----------|--------------------------------------------------------------------|--------|--------|--------|-------|------|------|-------|--|
| Start Time & Date     | Period (T) | dB L <sub>Aeq,T</sub> | dB L <sub>AFmax</sub> | dB LA90,T | 63 Hz                                                              | 125 Hz | 250 Hz | 500 Hz | 1k Hz | 2kHz | 4kHz | 8 kHz |  |
| 22/11/2018 00:00      | 15-mins    | 36                    | 49                    | 27        | 49                                                                 | 39     | 31     | 32     | 33    | 28   | 19   | 15    |  |
| 22/11/2018 00:15      | 15-mins    | 50                    | 75                    | 25        | 60                                                                 | 52     | 44     | 44     | 40    | 43   | 44   | 43    |  |
| 22/11/2018 00:30      | 15-mins    | 34                    | 52                    | 29        | 41                                                                 | 32     | 27     | 31     | 32    | 25   | 19   | 13    |  |
| 22/11/2018 00:45      | 15-mins    | 34                    | 45                    | 28        | 44                                                                 | 38     | 33     | 31     | 30    | 24   | 12   | 12    |  |
| 22/11/2018 01:00      | 15-mins    | 35                    | 53                    | 24        | 38                                                                 | 31     | 30     | 31     | 32    | 28   | 16   | 13    |  |
| 22/11/2018 01:15      | 15-mins    | 32                    | 48                    | 22        | 38                                                                 | 34     | 29     | 27     | 29    | 25   | 13   | 12    |  |
| 22/11/2018 01:30      | 15-mins    | 33                    | 47                    | 22        | 41                                                                 | 33     | 28     | 28     | 30    | 25   | 13   | 12    |  |
| 22/11/2018 01:45      | 15-mins    | 36                    | 48                    | 24        | 46                                                                 | 38     | 29     | 32     | 33    | 27   | 16   | 12    |  |
| 22/11/2018 02:00      | 15-mins    | 31                    | 54                    | 21        | 40                                                                 | 36     | 27     | 30     | 29    | 16   | 10   | 12    |  |
| 22/11/2018 02:15      | 15-mins    | 32                    | 44                    | 24        | 42                                                                 | 35     | 29     | 29     | 29    | 22   | 13   | 12    |  |
| 22/11/2018 02:30      | 15-mins    | 29                    | 43                    | 23        | 42                                                                 | 35     | 26     | 26     | 27    | 20   | 11   | 13    |  |
| 22/11/2018 02:45      | 15-mins    | 29                    | 45                    | 21        | 43                                                                 | 32     | 27     | 27     | 26    | 19   | 11   | 13    |  |
| 22/11/2018 03:00      | 15-mins    | 29                    | 46                    | 21        | 40                                                                 | 31     | 27     | 25     | 27    | 19   | 10   | 12    |  |
| 22/11/2018 03:15      | 15-mins    | 32                    | 46                    | 22        | 44                                                                 | 33     | 27     | 28     | 29    | 23   | 12   | 12    |  |
| 22/11/2018 03:30      | 15-mins    | 31                    | 53                    | 21        | 40                                                                 | 31     | 27     | 29     | 29    | 18   | 10   | 12    |  |
| 22/11/2018 03:45      | 15-mins    | 32                    | 53                    | 23        | 42                                                                 | 33     | 28     | 28     | 29    | 21   | 13   | 12    |  |
| 22/11/2018 04:00      | 15-mins    | 34                    | 47                    | 25        | 44                                                                 | 34     | 31     | 32     | 31    | 25   | 14   | 12    |  |
| 22/11/2018 04:15      | 15-mins    | 34                    | 48                    | 26        | 45                                                                 | 36     | 31     | 31     | 32    | 25   | 14   | 12    |  |
| 22/11/2018 04:30      | 15-mins    | 35                    | 49                    | 27        | 46                                                                 | 37     | 36     | 32     | 32    | 25   | 14   | 12    |  |



|                   |            |                       |                       | 15.1      | Sound Pressure Levels (dB L <sub>eq,T</sub> ) per octave band (Hz) |        |        |        |       |      |      |       |
|-------------------|------------|-----------------------|-----------------------|-----------|--------------------------------------------------------------------|--------|--------|--------|-------|------|------|-------|
| Start Time & Date | Period (T) | dB L <sub>Aeq,T</sub> | dB L <sub>AFmax</sub> | GB LA90,T | 63 Hz                                                              | 125 Hz | 250 Hz | 500 Hz | 1k Hz | 2kHz | 4kHz | 8 kHz |
| 22/11/2018 04:45  | 15-mins    | 37                    | 47                    | 31        | 47                                                                 | 39     | 33     | 33     | 34    | 27   | 15   | 12    |
| 22/11/2018 05:00  | 15-mins    | 41                    | 52                    | 35        | 48                                                                 | 40     | 34     | 36     | 39    | 34   | 18   | 12    |
| 22/11/2018 05:15  | 15-mins    | 42                    | 53                    | 37        | 49                                                                 | 39     | 34     | 37     | 40    | 34   | 19   | 12    |
| 22/11/2018 05:30  | 15-mins    | 43                    | 51                    | 38        | 53                                                                 | 41     | 38     | 38     | 41    | 35   | 22   | 13    |
| 22/11/2018 05:45  | 15-mins    | 43                    | 52                    | 39        | 50                                                                 | 42     | 37     | 39     | 41    | 34   | 21   | 13    |
| 22/11/2018 06:00  | 15-mins    | 43                    | 50                    | 39        | 49                                                                 | 41     | 38     | 38     | 40    | 34   | 21   | 15    |
| 22/11/2018 06:15  | 15-mins    | 46                    | 66                    | 41        | 56                                                                 | 47     | 43     | 40     | 42    | 38   | 33   | 33    |
| 22/11/2018 06:30  | 15-mins    | 46                    | 62                    | 42        | 57                                                                 | 46     | 42     | 40     | 43    | 38   | 29   | 27    |
| 22/11/2018 06:45  | 15-mins    | 47                    | 61                    | 43        | 55                                                                 | 47     | 41     | 40     | 45    | 40   | 26   | 15    |
| 22/11/2018 07:00  | 1-hour     | 49                    | 65                    | 44        | 58                                                                 | 47     | 41     | 41     | 46    | 43   | 32   | 26    |
| 22/11/2018 08:00  | 1-hour     | 50                    | 71                    | 46        | 58                                                                 | 49     | 42     | 42     | 47    | 44   | 33   | 28    |
| 22/11/2018 09:00  | 1-hour     | 46                    | 64                    | 41        | 57                                                                 | 47     | 41     | 40     | 43    | 40   | 30   | 22    |
| 22/11/2018 10:00  | 1-hour     | 48                    | 68                    | 38        | 58                                                                 | 51     | 42     | 40     | 42    | 40   | 42   | 32    |
| 22/11/2018 11:00  | 1-hour     | 44                    | 64                    | 36        | 56                                                                 | 47     | 41     | 37     | 40    | 37   | 30   | 23    |
| 22/11/2018 12:00  | 1-hour     | 44                    | 67                    | 37        | 56                                                                 | 44     | 39     | 37     | 40    | 38   | 31   | 25    |
| 22/11/2018 13:00  | 1-hour     | 49                    | 78                    | 39        | 57                                                                 | 53     | 42     | 39     | 42    | 45   | 38   | 36    |
| 22/11/2018 14:00  | 1-hour     | 46                    | 71                    | 40        | 56                                                                 | 48     | 41     | 39     | 42    | 39   | 34   | 35    |
| 22/11/2018 15:00  | 1-hour     | 47                    | 64                    | 43        | 57                                                                 | 46     | 41     | 40     | 43    | 40   | 36   | 35    |
| 22/11/2018 16:00  | 1-hour     | 48                    | 66                    | 45        | 58                                                                 | 47     | 42     | 42     | 45    | 42   | 37   | 32    |



| Charle Time of Darks | D:! (T)    | -10.1                 | -10.1                 | -ID I     |       | Sound  | Pressure L | evels (dB | L <sub>eq,T</sub> ) per o | ctave ba | nd (Hz) |       |
|----------------------|------------|-----------------------|-----------------------|-----------|-------|--------|------------|-----------|---------------------------|----------|---------|-------|
| Start Time & Date    | Period (T) | dB L <sub>Aeq,T</sub> | dB L <sub>AFmax</sub> | dB Lago,t | 63 Hz | 125 Hz | 250 Hz     | 500 Hz    | 1k Hz                     | 2kHz     | 4kHz    | 8 kHz |
| 22/11/2018 17:00     | 1-hour     | 49                    | 68                    | 45        | 56    | 49     | 43         | 42        | 45                        | 42       | 35      | 28    |
| 22/11/2018 18:00     | 1-hour     | 46                    | 64                    | 41        | 56    | 44     | 40         | 40        | 44                        | 39       | 31      | 25    |
| 22/11/2018 19:00     | 1-hour     | 46                    | 67                    | 41        | 54    | 49     | 46         | 41        | 43                        | 38       | 30      | 23    |
| 22/11/2018 20:00     | 1-hour     | 45                    | 63                    | 39        | 53    | 42     | 38         | 39        | 42                        | 38       | 31      | 27    |
| 22/11/2018 21:00     | 1-hour     | 44                    | 63                    | 37        | 55    | 44     | 39         | 38        | 41                        | 38       | 32      | 30    |
| 22/11/2018 22:00     | 1-hour     | 43                    | 64                    | 36        | 52    | 41     | 35         | 36        | 39                        | 36       | 31      | 28    |
| 22/11/2018 23:00     | 15-mins    | 42                    | 55                    | 35        | 45    | 40     | 36         | 35        | 38                        | 35       | 29      | 29    |
| 22/11/2018 23:15     | 15-mins    | 43                    | 61                    | 33        | 52    | 41     | 39         | 38        | 39                        | 36       | 31      | 29    |
| 22/11/2018 23:30     | 15-mins    | 52                    | 76                    | 35        | 59    | 52     | 45         | 45        | 42                        | 44       | 46      | 45    |
| 22/11/2018 23:45     | 15-mins    | 40                    | 61                    | 32        | 46    | 46     | 41         | 33        | 35                        | 32       | 28      | 28    |

Table B2: Results from ML2

| Table bz. Resolls it | 7111 74122 |                       |                 |           |       |        |            |           |                           |           |         |       |
|----------------------|------------|-----------------------|-----------------|-----------|-------|--------|------------|-----------|---------------------------|-----------|---------|-------|
| Start Time & Date    | Pariod (T) | dP I                  | Aeg,T dB LAFmax | dP I      |       | Sound  | Pressure L | evels (dB | L <sub>eq,T</sub> ) per o | ctave baı | nd (Hz) |       |
| Start Time & Date    | Period (T) | dB L <sub>Aeq,T</sub> | GB LAFmax       | dB La90,T | 63 Hz | 125 Hz | 250 Hz     | 500 Hz    | 1k Hz                     | 2kHz      | 4kHz    | 8 kHz |
| 22/11/2018 00:00     | 15-mins    | 52                    | 80              | 28        | 59    | 51     | 43         | 43        | 48                        | 47        | 39      | 33    |
| 22/11/2018 00:15     | 15-mins    | 44                    | 73              | 27        | 51    | 42     | 37         | 37        | 41                        | 38        | 29      | 22    |
| 22/11/2018 00:30     | 15-mins    | 46                    | 75              | 29        | 47    | 35     | 34         | 38        | 42                        | 40        | 31      | 24    |
| 22/11/2018 00:45     | 15-mins    | 43                    | 70              | 28        | 47    | 43     | 38         | 37        | 40                        | 37        | 29      | 23    |
| 22/11/2018 01:00     | 15-mins    | 44                    | 70              | 24        | 42    | 36     | 37         | 37        | 42                        | 36        | 28      | 20    |
| 22/11/2018 01:15     | 15-mins    | 32                    | 49              | 23        | 37    | 35     | 30         | 25        | 30                        | 24        | 9       | 9     |



|                   | D 1 1/T)   |                       |                       |           | Sound Pressure Levels (dB L <sub>eq,T</sub> ) per octave band (Hz) |        |        |        |       |      |      |       |
|-------------------|------------|-----------------------|-----------------------|-----------|--------------------------------------------------------------------|--------|--------|--------|-------|------|------|-------|
| Start Time & Date | Period (T) | dB L <sub>Aeq,T</sub> | dB L <sub>AFmax</sub> | GB LA90,T | 63 Hz                                                              | 125 Hz | 250 Hz | 500 Hz | 1k Hz | 2kHz | 4kHz | 8 kHz |
| 22/11/2018 01:30  | 15-mins    | 48                    | 74                    | 24        | 49                                                                 | 40     | 40     | 42     | 45    | 41   | 33   | 28    |
| 22/11/2018 01:45  | 15-mins    | 33                    | 48                    | 26        | 45                                                                 | 37     | 29     | 29     | 31    | 23   | 9    | 9     |
| 22/11/2018 02:00  | 15-mins    | 30                    | 52                    | 24        | 38                                                                 | 37     | 28     | 26     | 28    | 17   | 9    | 9     |
| 22/11/2018 02:15  | 15-mins    | 31                    | 44                    | 26        | 41                                                                 | 34     | 28     | 27     | 29    | 20   | 8    | 9     |
| 22/11/2018 02:30  | 15-mins    | 45                    | 72                    | 23        | 53                                                                 | 42     | 42     | 40     | 42    | 37   | 29   | 23    |
| 22/11/2018 02:45  | 15-mins    | 29                    | 43                    | 23        | 41                                                                 | 33     | 26     | 25     | 26    | 17   | 8    | 9     |
| 22/11/2018 03:00  | 15-mins    | 46                    | 70                    | 23        | 48                                                                 | 41     | 43     | 39     | 44    | 40   | 32   | 25    |
| 22/11/2018 03:15  | 15-mins    | 46                    | 72                    | 24        | 47                                                                 | 40     | 39     | 39     | 43    | 40   | 30   | 24    |
| 22/11/2018 03:30  | 15-mins    | 29                    | 46                    | 22        | 39                                                                 | 32     | 26     | 27     | 27    | 17   | 8    | 9     |
| 22/11/2018 03:45  | 15-mins    | 45                    | 72                    | 24        | 47                                                                 | 41     | 36     | 39     | 42    | 37   | 31   | 26    |
| 22/11/2018 04:00  | 15-mins    | 45                    | 72                    | 24        | 48                                                                 | 38     | 41     | 40     | 43    | 38   | 29   | 21    |
| 22/11/2018 04:15  | 15-mins    | 34                    | 48                    | 27        | 43                                                                 | 35     | 29     | 29     | 32    | 22   | 8    | 9     |
| 22/11/2018 04:30  | 15-mins    | 50                    | 76                    | 28        | 56                                                                 | 46     | 46     | 43     | 47    | 44   | 37   | 31    |
| 22/11/2018 04:45  | 15-mins    | 46                    | 73                    | 30        | 50                                                                 | 43     | 38     | 40     | 44    | 40   | 31   | 23    |
| 22/11/2018 05:00  | 15-mins    | 50                    | 76                    | 35        | 52                                                                 | 44     | 43     | 43     | 47    | 44   | 36   | 29    |
| 22/11/2018 05:15  | 15-mins    | 55                    | 77                    | 37        | 58                                                                 | 47     | 46     | 48     | 52    | 49   | 41   | 35    |
| 22/11/2018 05:30  | 15-mins    | 56                    | 78                    | 38        | 58                                                                 | 50     | 49     | 50     | 53    | 50   | 43   | 38    |
| 22/11/2018 05:45  | 15-mins    | 53                    | 76                    | 38        | 56                                                                 | 47     | 47     | 47     | 50    | 47   | 38   | 32    |
| 22/11/2018 06:00  | 15-mins    | 53                    | 78                    | 37        | 57                                                                 | 47     | 46     | 47     | 51    | 47   | 39   | 34    |



|                   |            |                       |                       | 15.1      | Sound Pressure Levels (dB L <sub>eq,T</sub> ) per octave band (Hz) |        |        |        |       |      |      |       |
|-------------------|------------|-----------------------|-----------------------|-----------|--------------------------------------------------------------------|--------|--------|--------|-------|------|------|-------|
| Start Time & Date | Period (T) | dB L <sub>Aeq,T</sub> | dB L <sub>AFmax</sub> | GB LA90,T | 63 Hz                                                              | 125 Hz | 250 Hz | 500 Hz | 1k Hz | 2kHz | 4kHz | 8 kHz |
| 22/11/2018 06:15  | 15-mins    | 54                    | 80                    | 39        | 59                                                                 | 51     | 56     | 48     | 50    | 47   | 42   | 42    |
| 22/11/2018 06:30  | 15-mins    | 59                    | 83                    | 41        | 66                                                                 | 57     | 54     | 52     | 55    | 53   | 46   | 41    |
| 22/11/2018 06:45  | 15-mins    | 62                    | 90                    | 43        | 67                                                                 | 64     | 64     | 60     | 58    | 53   | 46   | 41    |
| 22/11/2018 07:00  | 1-hour     | 62                    | 84                    | 44        | 65                                                                 | 56     | 54     | 56     | 58    | 56   | 48   | 43    |
| 22/11/2018 08:00  | 1-hour     | 63                    | 84                    | 46        | 66                                                                 | 64     | 56     | 56     | 60    | 57   | 49   | 45    |
| 22/11/2018 09:00  | 1-hour     | 61                    | 89                    | 42        | 65                                                                 | 55     | 55     | 56     | 57    | 54   | 48   | 44    |
| 22/11/2018 10:00  | 1-hour     | 59                    | 82                    | 40        | 61                                                                 | 55     | 52     | 52     | 55    | 53   | 46   | 42    |
| 22/11/2018 11:00  | 1-hour     | 60                    | 88                    | 36        | 63                                                                 | 56     | 55     | 55     | 56    | 54   | 49   | 46    |
| 22/11/2018 12:00  | 1-hour     | 60                    | 80                    | 37        | 62                                                                 | 52     | 51     | 52     | 56    | 55   | 51   | 47    |
| 22/11/2018 13:00  | 1-hour     | 63                    | 84                    | 40        | 65                                                                 | 57     | 54     | 54     | 58    | 57   | 56   | 53    |
| 22/11/2018 14:00  | 1-hour     | 64                    | 84                    | 42        | 63                                                                 | 56     | 55     | 55     | 58    | 58   | 57   | 54    |
| 22/11/2018 15:00  | 1-hour     | 67                    | 92                    | 42        | 65                                                                 | 56     | 56     | 57     | 60    | 61   | 60   | 57    |
| 22/11/2018 16:00  | 1-hour     | 67                    | 84                    | 44        | 67                                                                 | 59     | 56     | 56     | 61    | 62   | 61   | 58    |
| 22/11/2018 17:00  | 1-hour     | 66                    | 93                    | 45        | 65                                                                 | 59     | 57     | 58     | 61    | 60   | 60   | 56    |
| 22/11/2018 18:00  | 1-hour     | 63                    | 80                    | 42        | 63                                                                 | 55     | 52     | 53     | 58    | 57   | 55   | 51    |
| 22/11/2018 19:00  | 1-hour     | 60                    | 88                    | 40        | 60                                                                 | 55     | 55     | 54     | 56    | 54   | 52   | 47    |
| 22/11/2018 20:00  | 1-hour     | 58                    | 84                    | 39        | 57                                                                 | 49     | 49     | 49     | 54    | 53   | 51   | 47    |
| 22/11/2018 21:00  | 1-hour     | 60                    | 87                    | 36        | 57                                                                 | 53     | 49     | 50     | 54    | 54   | 53   | 49    |
| 22/11/2018 22:00  | 1-hour     | 59                    | 82                    | 33        | 56                                                                 | 47     | 45     | 47     | 53    | 53   | 53   | 48    |



| Start Time & Date | David d (T) | -ID I     | dB LAeg,T dB LAFmax | dR Lar dR II | dB LA90.T |        | Sound  | Pressure L | evels (dB | L <sub>eq,ī</sub> ) per o | ctave bai | nd (Hz) |  |
|-------------------|-------------|-----------|---------------------|--------------|-----------|--------|--------|------------|-----------|---------------------------|-----------|---------|--|
| sidii iime & Daie | Period (T)  | GD LAeq,T | GB LAFmax           | GB LA90,T    | 63 Hz     | 125 Hz | 250 Hz | 500 Hz     | 1k Hz     | 2kHz                      | 4kHz      | 8 kHz   |  |
| 22/11/2018 23:00  | 15-mins     | 56        | 79                  | 33           | 52        | 47     | 44     | 45         | 50        | 51                        | 50        | 46      |  |
| 22/11/2018 23:15  | 15-mins     | 54        | 83                  | 30           | 53        | 45     | 41     | 42         | 48        | 48                        | 47        | 43      |  |
| 22/11/2018 23:30  | 15-mins     | 58        | 81                  | 30           | 58        | 50     | 45     | 46         | 51        | 52                        | 51        | 48      |  |
| 22/11/2018 23:45  | 15-mins     | 56        | 81                  | 26           | 56        | 51     | 48     | 47         | 51        | 50                        | 49        | 45      |  |

Table B3: Results from ML3

| Start Time & Date  | David (T)  | dB L <sub>Aeq,T</sub> | ا دام                 | alD I     |       | Sound  | Pressure L | evels (dB | L <sub>eq,T</sub> ) per o | ctave ba | nd (Hz) |       |
|--------------------|------------|-----------------------|-----------------------|-----------|-------|--------|------------|-----------|---------------------------|----------|---------|-------|
| Sidif filme & Date | Period (T) | GB LAeq,T             | dB L <sub>AFmax</sub> | dB La90,T | 63 Hz | 125 Hz | 250 Hz     | 500 Hz    | 1k Hz                     | 2kHz     | 4kHz    | 8 kHz |
| 21/11/2018 23:00   | 15-mins    | 65                    | 98                    | 35        | 71    | 67     | 66         | 64        | 58                        | 54       | 52      | 51    |
| 21/11/2018 23:15   | 15-mins    | 53                    | 75                    | 34        | 57    | 49     | 53         | 46        | 49                        | 48       | 37      | 25    |
| 21/11/2018 23:30   | 15-mins    | 51                    | 76                    | 33        | 58    | 60     | 47         | 42        | 48                        | 46       | 35      | 24    |
| 21/11/2018 23:45   | 15-mins    | 49                    | 73                    | 31        | 60    | 50     | 45         | 46        | 45                        | 41       | 34      | 26    |
| 22/11/2018 00:00   | 15-mins    | 50                    | 70                    | 31        | 54    | 48     | 44         | 44        | 46                        | 44       | 34      | 23    |
| 22/11/2018 00:15   | 15-mins    | 47                    | 68                    | 29        | 48    | 39     | 34         | 38        | 43                        | 43       | 31      | 18    |
| 22/11/2018 00:30   | 15-mins    | 46                    | 66                    | 32        | 49    | 42     | 37         | 40        | 43                        | 41       | 30      | 19    |
| 22/11/2018 00:45   | 15-mins    | 46                    | 65                    | 30        | 48    | 41     | 36         | 37        | 43                        | 40       | 30      | 18    |
| 22/11/2018 01:00   | 15-mins    | 50                    | 71                    | 27        | 48    | 46     | 45         | 44        | 46                        | 44       | 35      | 24    |
| 22/11/2018 01:15   | 15-mins    | 44                    | 66                    | 26        | 45    | 40     | 34         | 37        | 41                        | 39       | 28      | 17    |
| 22/11/2018 01:30   | 15-mins    | 46                    | 66                    | 27        | 48    | 40     | 35         | 38        | 43                        | 41       | 30      | 18    |
| 22/11/2018 01:45   | 15-mins    | 51                    | 74                    | 26        | 57    | 49     | 43         | 47        | 48                        | 42       | 35      | 26    |



|                   | D 1 1/T)   |                       |                       |           | Sound Pressure Levels (dB L <sub>eq,I</sub> ) per octave band (Hz) |        |        |        |       |      |      |       |
|-------------------|------------|-----------------------|-----------------------|-----------|--------------------------------------------------------------------|--------|--------|--------|-------|------|------|-------|
| Start Time & Date | Period (T) | dB L <sub>Aeq,T</sub> | dB L <sub>AFmax</sub> | GB LA90,T | 63 Hz                                                              | 125 Hz | 250 Hz | 500 Hz | 1k Hz | 2kHz | 4kHz | 8 kHz |
| 22/11/2018 02:00  | 15-mins    | 46                    | 67                    | 25        | 51                                                                 | 46     | 41     | 44     | 42    | 38   | 32   | 22    |
| 22/11/2018 02:15  | 15-mins    | 41                    | 64                    | 26        | 46                                                                 | 37     | 32     | 34     | 38    | 36   | 24   | 16    |
| 22/11/2018 02:30  | 15-mins    | 36                    | 60                    | 26        | 45                                                                 | 33     | 30     | 31     | 34    | 28   | 18   | 12    |
| 22/11/2018 02:45  | 15-mins    | 44                    | 71                    | 26        | 54                                                                 | 46     | 38     | 40     | 38    | 38   | 28   | 19    |
| 22/11/2018 03:00  | 15-mins    | 45                    | 72                    | 26        | 52                                                                 | 44     | 39     | 42     | 42    | 38   | 32   | 24    |
| 22/11/2018 03:15  | 15-mins    | 42                    | 64                    | 25        | 47                                                                 | 38     | 34     | 36     | 39    | 36   | 27   | 19    |
| 22/11/2018 03:30  | 15-mins    | 45                    | 72                    | 26        | 49                                                                 | 43     | 39     | 42     | 41    | 36   | 30   | 22    |
| 22/11/2018 03:45  | 15-mins    | 47                    | 68                    | 27        | 54                                                                 | 44     | 42     | 43     | 44    | 40   | 32   | 24    |
| 22/11/2018 04:00  | 15-mins    | 50                    | 72                    | 29        | 55                                                                 | 50     | 44     | 48     | 47    | 42   | 35   | 26    |
| 22/11/2018 04:15  | 15-mins    | 49                    | 70                    | 30        | 56                                                                 | 48     | 44     | 46     | 45    | 42   | 35   | 27    |
| 22/11/2018 04:30  | 15-mins    | 47                    | 70                    | 30        | 50                                                                 | 46     | 41     | 42     | 44    | 41   | 33   | 23    |
| 22/11/2018 04:45  | 15-mins    | 52                    | 72                    | 36        | 58                                                                 | 50     | 44     | 48     | 49    | 45   | 38   | 28    |
| 22/11/2018 05:00  | 15-mins    | 53                    | 71                    | 39        | 56                                                                 | 51     | 46     | 48     | 51    | 47   | 39   | 29    |
| 22/11/2018 05:15  | 15-mins    | 55                    | 73                    | 39        | 62                                                                 | 52     | 48     | 49     | 51    | 48   | 40   | 31    |
| 22/11/2018 05:30  | 15-mins    | 56                    | 75                    | 42        | 59                                                                 | 55     | 51     | 51     | 52    | 49   | 41   | 31    |
| 22/11/2018 05:45  | 15-mins    | 56                    | 71                    | 41        | 61                                                                 | 52     | 48     | 50     | 52    | 50   | 41   | 31    |
| 22/11/2018 06:00  | 15-mins    | 57                    | 72                    | 43        | 59                                                                 | 53     | 50     | 51     | 54    | 51   | 42   | 31    |
| 22/11/2018 06:15  | 15-mins    | 58                    | 73                    | 44        | 60                                                                 | 53     | 49     | 52     | 55    | 52   | 43   | 33    |
| 22/11/2018 06:30  | 15-mins    | 59                    | 72                    | 46        | 66                                                                 | 58     | 53     | 53     | 56    | 53   | 45   | 35    |



| Charletine & Date | D:! (T)    | -ID I                 | -ID I                 | -10.1     | Sound Pressure Levels (dB L <sub>eq,T</sub> ) per octave band (Hz) |        |        |        |       |      |      |       |
|-------------------|------------|-----------------------|-----------------------|-----------|--------------------------------------------------------------------|--------|--------|--------|-------|------|------|-------|
| Start Time & Date | Period (T) | dB L <sub>Aeq,T</sub> | dB L <sub>AFmax</sub> | GB LA90,T | 63 Hz                                                              | 125 Hz | 250 Hz | 500 Hz | 1k Hz | 2kHz | 4kHz | 8 kHz |
| 22/11/2018 06:45  | 15-mins    | 60                    | 75                    | 46        | 66                                                                 | 57     | 53     | 54     | 57    | 54   | 46   | 37    |
| 22/11/2018 07:00  | 1-hour     | 62                    | 74                    | 52        | 65                                                                 | 57     | 53     | 55     | 59    | 56   | 47   | 36    |
| 22/11/2018 08:00  | 1-hour     | 62                    | 75                    | 49        | 66                                                                 | 59     | 54     | 55     | 59    | 56   | 47   | 36    |
| 22/11/2018 09:00  | 1-hour     | 60                    | 75                    | 43        | 63                                                                 | 57     | 52     | 54     | 56    | 54   | 45   | 35    |
| 22/11/2018 10:00  | 1-hour     | 60                    | 80                    | 41        | 63                                                                 | 64     | 53     | 54     | 57    | 54   | 47   | 37    |
| 22/11/2018 11:00  | 1-hour     | 59                    | 79                    | 38        | 63                                                                 | 63     | 53     | 53     | 55    | 53   | 48   | 39    |
| 22/11/2018 12:00  | 1-hour     | 60                    | 80                    | 40        | 63                                                                 | 64     | 51     | 53     | 56    | 54   | 49   | 42    |
| 22/11/2018 13:00  | 1-hour     | 60                    | 76                    | 41        | 64                                                                 | 57     | 52     | 54     | 56    | 55   | 50   | 42    |
| 22/11/2018 14:00  | 1-hour     | 61                    | 92                    | 44        | 67                                                                 | 66     | 59     | 56     | 57    | 55   | 50   | 44    |
| 22/11/2018 15:00  | 1-hour     | 62                    | 78                    | 48        | 65                                                                 | 58     | 52     | 54     | 60    | 54   | 50   | 44    |
| 22/11/2018 16:00  | 1-hour     | 62                    | 76                    | 54        | 65                                                                 | 57     | 52     | 54     | 62    | 45   | 24   | 8     |
| 22/11/2018 17:00  | 1-hour     | 62                    | 76                    | 54        | 64                                                                 | 59     | 52     | 53     | 62    | 45   | 22   | 7     |
| 22/11/2018 18:00  | 1-hour     | 60                    | 78                    | 49        | 62                                                                 | 56     | 49     | 50     | 59    | 43   | 19   | 7     |
| 22/11/2018 19:00  | 1-hour     | 57                    | 73                    | 43        | 62                                                                 | 56     | 49     | 49     | 56    | 45   | 18   | 10    |
| 22/11/2018 20:00  | 1-hour     | 53                    | 69                    | 40        | 60                                                                 | 54     | 46     | 44     | 51    | 47   | 16   | 11    |
| 22/11/2018 21:00  | 1-hour     | 55                    | 73                    | 40        | 61                                                                 | 54     | 48     | 46     | 54    | 41   | 17   | 7     |
| 22/11/2018 22:00  | 1-hour     | 54                    | 72                    | 39        | 58                                                                 | 53     | 44     | 44     | 53    | 36   | 14   | 6     |

| Barratt Homes and David Wilson Homes December 2018 LDP2246 |  |
|------------------------------------------------------------|--|
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
| APPENDIX C: Gardens requiring acoustic fencing             |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |

Halifax Road, Barnsley





